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SUMMARY

BatG is a trans-2-enoyl-ACP reductase, encoded
in the kalimantacin/batumin (kal/bat) biosynthesis
operon. It is not essential for the production of the
kal/bat secondary metabolite. Instead, BatG is an
isoform of FabI, conferring full resistance to target
bacteria. It also complements FabI in its role in fatty
acid biosynthesis. The identification of FabI as the
antibacterial target is important to assess clinical
potential of the kalimantacin/batumin antibiotics
against Staphylococcus aureus.

INTRODUCTION

Bacteria produce fatty acids through a type II system (FASII).

Each reaction is catalyzed by a discrete enzyme. The FASII

pathway is essential to cell growth and the trans-2-enoyl reduc-

tase is responsible for the final and rate-limiting step in each

cycle. As such, this enzyme is essential for the viability of

bacteria (Heath and Rock, 1995). Since the initially identified

trans-2-enoyl reductase FabI (e.g., Escherichia coli, S. aureus),

other FabI isozymes were discovered in other species, such

as FabL and FabK in Bacillus subtilis and Streptococcus pneu-

moniae, respectively (Heath and Rock, 2000; Heath et al.,

2000). Recently, reports on yet another FabI isoform (FabV)

were published from Vibrio cholerae (Massengo-Triassé and

Cronan, 2008), Pseudomonas aeruginosa (Zhu et al., 2010),

and Burkholderia mallei (Lu and Tonge, 2010). These isoforms

show only weak sequence homology with other trans-2-enoyl

reductases.

Given their selectivity for bacteria over mammals and the

highly conserved FASII system between species, fatty acid

inhibitors have long been undisputedly potent antibacterial

compounds (Payne et al., 2002). Several antibiotics target bacte-

rial fatty acid synthesis, three of which (Triclosan, diazaborines,

and isoniazid) target the trans-2-enoyl-ACP reductase (FabI)

(Heath et al., 2002). However, in recent reports their potential

in clinical settings has been hotly debated. Brinster et al. (2009)

showed that major Gram-positive pathogens can overcome

FASII inhibition through exogenous fatty acid incorporation. On
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the other hand, others invalidated these results for S. aureus

and showed that FabI inhibitors do work in vivo (Balemans

et al., 2010).

Methicillin-resistant Staphylococcus aureus (MRSA) repre-

sents a major threat in both hospital and community settings,

since it is developing resistance to the so called ‘‘last-line’’ anti-

biotic vancomycin. To combat this emerging antibiotic resis-

tance of pathogenic bacteria, new antibacterial agents are

needed. The kalimantacin antibiotics are promising novel anti-

bacterial agents with a strong selective antistaphylococcal

activity (0.05 mg/ml) and moderate activity against enterobacte-

ria (1–10 mg/ml) (Kamigiri et al., 1996). The kalimantacin antibi-

otics were isolated from a fermentation broth of Alcaligenes sp.

YL-02632S (Kamigiri et al., 1996; Tokunaga et al., 1996). Batu-

min, a compound with the same gross molecular composition

as kalimantacin A, has been isolated from a fermentation broth

of Pseudomonas batumici (Smirnov et al., 2000). To date, no ba-

tumin-resistant clinical Staphylococcus isolates were reported

(Klochko et al., 2008) and the mechanism of action of these

antibacterial compounds has not yet been reported. However,

batumin influences cell wall morphology, causing the peripheral

wall to differentiate into an outer and inner layer (primary and

secondary wall, respectively; Giesbrecht et al., 1998).

Recently, we reported the isolation of kalimantacin/batumin

(kal/bat) from P. fluorescens strain BCCM_ID9359 and experi-

mentally elucidated its biosynthesis gene cluster (Mattheus

et al., 2010). High-resolution MS, 1H, and 13C NMR spectra

data verified the polyketide structure (Figure 1) as reported for

kalimantacinA/batumin (Mattheus et al., 2010). The kal/bat

gene cluster consists of 16 open reading frames (ORFs), encod-

ing a collinear hybrid PKS-NRPS system (Bat1-3), extended by

trans-acting tailoring functions (BatA-M). We here report that

BatG encodes a functional FabI isozymewhich confers full resis-

tance to kalimantacin/batumin and complements FabI, marking

this enzyme as the bacterial target for these antibiotics.

RESULTS AND DISCUSSION

Bioinformatical Analysis Reveals BatG as a Predicted
Trans-2-Enoyl-ACP Reductase Isozyme
Initial similarity searches revealedBatGsimilarity to trans-2-enoyl-

ACPreductases, involved in the formationof a saturatedacyl-ACP

by an NAD(P)H-dependent reduction of the trans-2-enoyl-ACP
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Figure 1. Structure of Kalimantacins, Batumin, and kal/bat

The molecules have a linear polyketidal backbone with an incorporated

glycine, multiple methyl branches, and a characteristic carbamoyl group.
Figure 2. Multiple Alignment of BatG with ecFabI and paFabV

BatG shows strong similarity with paFabV andmoderate similarity with ecFabI.

NAD(P)H binding motif (GxxxGxG) and catalytic residues (Y-Y-K) are high-

lighted in gray and black, respectively.
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double bond (Mattheus et al., 2010; Heath et al., 2002). These

enzymes are essential for the final step of the elongation cycle of

fatty acid biosynthesis, a reaction catalyzed by FabI in E. coli

andS.aureus.Multiple alignmentofBatGwithecFabI andpaFabV

shows only moderate similarity with ecFabI (as seen with other

experimentally proven trans-2-enoyl-ACP reductase isoforms

like FabK, FabL), but strong homology to paFabV (59% identity,

76% similarity) (Figure 2). The conserved NADH-binding motif

(GxxxGxG) and catalytic triad (Y-Y-K) are present. As in paFabV,

BatG contains a Y-X8-K active site motif, rather than the Y-X6-K

motif present in ecFabI. Based on this sequence homology, we

hypothesize that BatG is a trans-2-enoyl-ACP reductase isozyme.

BatG Knockout Analysis Does Not Influence the kal/bat
Biosynthesis Structurally
To study the role of BatG in the biosynthesis of kal/bat, we gener-

ated a specific in vivo gene inactivation by in-frame deletion of

BatG, minimizing the risk of polar effects. The phenotype of the

ORF-specific mutant was examined by plate bioassay, HPLC

purification, FT-MS analysis, and 1H, 13C NMR analysis and

compared with results from the wild-type strain. An identical

HPLC retention time of 20.8 min (see Figure S1A available online)

and a fully conserved antibacterial activity on a bacterial lawn

plate assay suggest no change in structure or conformation.

This is confirmed by an HRMS molecular peak at [M + Na]/e =

571.3339, molecular formula C30H48N2O7Na (<1 ppm error),

while 1H and 13C NMR spectra data further verify the wild-type

kal/bat structure (1) (Figure 1; Figures S1B–S1D). In addition,

the reported inactive 17-hydroxy kal/bat intermediate found in

chloroform extracts of wild-type cells is also present in the

BatG knockout strain. The only noticeable difference between

the wild-type strain and theBatG knockout strain is the total yield

of kal/bat production, 35 and 25 mg/l, respectively. This reduc-

tion is not attributed to growth retardation of the BatG knockout

strain (data not shown). These facts prove that the kal/bat

biosynthesis is independent of BatG, despite its localization in

the operon among kal/bat tailoring enzymes. In the kal/bat
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producing strain, P. fluorescens BCCM_ID9359, BatG is not

the sole resistance determinant since the BatG knockout strain

is still fully resistant (Table 1). Basal level shotgun sequencing

on strain BCCM ID9359 DNA (as described in Mattheus et al.,

2010) indicates the presence of another FabV homolog, not

linked to the kal/bat biosynthesis cluster, which may explain

the intrinsic kal/bat resistance (data not shown). Our results

show thatP. fluorescens pf5 is resistant to triclosan, yet sensitive

to kal/bat. In contrast, P. aeruginosa PAOI and P. fluorescens

BCCM_ID9359 are resistant to both triclosan and kal/bat. The

FabV homolog, PA2950, has been shown to be responsible for

triclosan resistance in P. aeruginosa PAOI (Zhu et al., 2010)

and is probably the determinant for kal/bat resistance too.

However, P. fluorescens pf5 also encodes a FabV homolog

(PFL3335). Structural studies revealed that the affinity of

triclosan to trans-2-enoyl-ACP reductases is attributable to the

interactions with the flexible NADH cofactor-binding loop. The

closed, ordered conformation of the loop is a major determinant

for the enhanced binding of triclosan (Pidugu et al., 2004).

Specific point mutations can change this conformation and

result in poor triclosan binding properties (Xu et al., 2008). The

differences in kal/bat and triclosan sensitivity of P. fluorescens

pf5, P. aeruginosa PAOI, and P. fluorescens BCCM_ID9359

could be explained by a different binding loop conformation in

PFL3335. However, PA2950 and PFL_3335 show slightly higher

overall homology (89%/79%, similarity/identity) compared to

the homology with the FabV homolog in P. fluorescens

BCCM_ID9359 (77%/60%, similarity/identity) and no specific

different regions/residues could be identified.

We have also previously shown that kal/bat is produced as

an inactive 17-hydroxy kal/bat precursor, which is activated by

oxidation upon export (Mattheus et al., 2010). This efflux-

coupled activation may form an additional self-resistance

system for P. fluorescens BCCM_ID9359 to prevent high intra-

cellular antibiotic concentration during production.
lsevier Ltd All rights reserved



Table 1. MIC Values

Strain

MIC (mg/ml)

Kal/Bat Triclosan

MH + 2% glucose MH + [0–0.01 mM IPTG] MH + [0.1–1 mM IPTG] MH + 0.5 mM IPTG

E. coli S17-1 4 2 2 0.1

E. coli S17-1+pJH10 1 1 1 0.1

E. coli S17-1 +pJH10_BatG 1 1 >128 32

E. coli S17-1 +pSK5632_BatG >128 >128 >128 32

P. fluorescens Pf5 2 2 2 64

P. fluorescens Pf5 +pJH10_BatG >128 >128 >128 64

P. fluorescens BCCM_ID9359_DBatG >128 >128 >128 64

S. aureus RN4220 0.1 0.1 0.1 0.1

S. aureus RN4220 + pSK5632_BatG >128 >128 >128 64

Minimal inhibitory concentrationswere determined using NCCLS standards (National Committee for Clinical Laboratory Standards, documentM7-A5).

pSK5632: ApR, CmR, thèta replication, Plac. pJH10: TcR, SmR, oriT, Ptac, lacIq.pSK5632 results in constitutive expression in both E. coli, P. fluores-

cens, and S. aureus. To control the tac-promotor regulated expression of pJH10_BatG in E. coli, glucose (2%) or varying IPTG concentrations

[1 mM- 1mM] were added. pJH10 is constitutively expressed in P. fluorescens, as shown in other expression experiments (Mattheus et al., 2010).

Figure 3. Growth of E. coli JP1111 FabI(Ts) Strain Complemented

with BatG

BatG was cloned into pJH10 low copy number vector under control of the tac

promotor. Both empty vector (pJH10) and construct (pJH10_BatG) were trans-

formed into FabI(Ts) strain JP1111. Serial 10-fold dilutions of each overnight

culture were spotted on plates of LB supplemented with 0.5 mM IPTG and

incubated at 30�C (left) and 42�C (right), respectively.
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Heterologous BatG Expression Provides Complete
Resistance to kal/bat in Sensitive Strains
and Complements FabI as an Essential Enzyme
in Fatty Acid Biosynthesis
Expression of BatG in trans, using the broad-host-range

IncQ expression vector pJH10 (El-sayed et al., 2001), in both

P. fluorescens pf5 and E. coli S17-1 results in a pronounced

increase of the MIC, from 2 mg/ml to complete resistance to

kal/bat (MIC > 128 mg/ml) (Table 1). Expression of BatG in

S. aureus RN4220 (using the low-copy-number shuttle vector

pSK5632; Grkovic et al., 2003) also confers complete resistance

to batumin (MIC from 0.05 to >128 mg/ml). Variation in BatG

expression level by controlled IPTG induction rules out a dose

dependent effect, indicating that the resistance is due to the

expression of the kal/bat-resistant BatG rather than overexpres-

sion of the target. BatG expression also confers resistance to

triclosan, another FabI inhibitor, with MIC drastically increasing

from 0.064 to 32 mg/ml and 64 mg/ml for E. coli and S. aureus,

respectively (Table 1). This further indicates a common antibac-

terial target of kal/bat and triclosan.

To test whether BatG can functionally complement FabI, the

expression plasmid was introduced into the E. coli fabI(Ts) strain

JP1111 (Egan and Russell, 1973). This strain is unable to grow at

the nonpermissive temperature of 42�C due to the fabI392muta-

tion. JP1111 strains complemented with BatG grow at 42�C,
whereas strains carrying the vector do not (Figure 3). Thus,

BatG functionally complements the E. coli fabI mutation,

showing its in vivo trans-2-enoyl-ACP reductase activity.

Correlating these data to the previously described host spec-

trum of activity of kal/bat (Mattheus et al., 2010) suggests that

species which rely solely on FabI homologs for their fatty acid

synthesis (S. aureus, E. coli) are effectively inhibited, while strains

with an alternative trans-2-enoyl-ACP reductase isoforms

(B. subtilis, P. aeruginosa, S. pneumoniae) are resistant to kal/bat.

Conclusions
Kal/bat has a strong antistaphylococcal activity with a MIC of

0.05 mg/ml, making it a potent new antibiotic to cope with resis-
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tant S. aureus (MRSA) infections. The results presented here

prove that kal/bat antibacterial activity is caused by FabI trans-

2-enoyl-ACP reductase inhibition during fatty acid biosynthesis,

a highly relevant and intensely discussed antibacterial target.

The trans-2-enoyl-ACP reductase isoform BatG is resistant to

both kal/bat and triclosan inhibition. The broad-host-range

complementation capability of this natural enzyme (P. fluores-

cens, E. coli, and S. aureus) suggests a potential and unwanted

source of resistance against FabI inhibitors in clinical settings.

Hence, these findings are important for future research on FabI

as an antibacterial target and for clinical potential of the kaliman-

tacin/batumin-related antibiotics against MRSA.
SIGNIFICANCE

To combat the emerging antibiotic resistance of pathogenic

bacteria like methicilin-resistant Staphylococcus aureus

(MRSA, a critical pathogen in hospital environments), new
071, October 29, 2010 ª2010 Elsevier Ltd All rights reserved 1069
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potential antibacterial agents (like the kalimantacin antibi-

otics) are being investigated. In this report, we show that

the kalimantacin antibiotics inhibit bacterial fatty acid

synthesis (FASII pathway) and we describe a natural resis-

tance gene. These results have strong implications for the

clinical potential of the kalimantacin antibiotics, since the

essential nature of the FASII pathway in Gram-positive path-

ogens is currently under debate.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Plasmids, and Culture Conditions

P. fluorescens strain BCCM_ID9359 was used as the wild-type kal/bat

producer. The strain was grown at 28�C in tryptose broth (Merck, Germany)

for liquid cultivation and on tryptose agar (Merck) for solid cultivation. E. coli

Transformax EC100 (Epicenter, US) was used for plasmid preparations,

E. coli S17-1 was used for conjugal transfer of DNA into P. fluorescens strain

BCCM_ID9359. E. coli strain JP1111was obtained from the Coli Genetic Stock

Center (CGSC, Yale University). Strains were grown at 37�C in lysogeny broth

(LB) and LB agar (LB supplemented with 1.5%w/v agar). S. aureus ATCC6538

was used in bioassays to monitor kal/bat production. Media were supple-

mented with one ore more antibiotics at appropriate concentrations: ampicillin

(100 mg/l), kanamycin (50 mg/l), triclosan (25 mg/l), tetracycline (15 mg/l).

Plasmids used during this work are listed in Table S1.

Production, Isolation, and Analysis of kal/bat

P. fluorescens strain BCCM_ID9359 was seeded in 250 ml tryptose broth in

a 1L Erlenmeyer flask and incubated at 16�C on a rotatary shaker

(200 rpm) for 48 hr. To isolate kal/bat, the culture was adjusted to pH 10

with NaOH, and the cells removed by centrifugation. After acidification with

formic acid to pH 3, the supernatant was extracted with chloroform (2 3

250 ml) and concentrated in vacuo. The extract was either used directly for

HPLC analysis or further purified by silica gel column chromatography. The

HPLC analysis was carried out on an Alltima C-18 column (5 mm, 250 3

4.6 mm, Alltech). The column was equilibrated with 100% solvent A (5%

acetonitrile (ACN), 0.1% TFA) and developed according to the following

program: (0–1 min, 100% A; 1–30 min, a linear gradient from 100% A to

100% ACN; 30–40 min, linear gradient from 100% ACN to 100% A) at a

flow rate of 1 ml/min and UV detection at 228 nm using a Shimadzu

SPD-10A detector.

Silica gel column chromatography (20 3 250 mm; CH2Cl2/MeOH/HCOOH

(100/4/0.1 to 100/10/0.1) was used for large scale purification prior to NMR

analysis and microbiological testing. MS analysis was performed on a Bruker

Daltonics Apex-Qe FT mass spectrometer and NMR on a Bruker Ultrashield

Avance instrument, operating at 600/300 MHz for 1H and 150/75 MHz for
13C nuclei in CDCl3.

Targeted Inactivation

Directed, in-frame gene deletion of BatG was achieved by cloning two DNA

fragments of approximately 300–500 bp flanking BatG into the suicide vector

pAKE604 (El-sayed et al., 2001) (pAKE604_BatG; primers are listed in Table

S1). DNA transfer to P. fluorescens strain BCCM_ID9359 was performed

through biparental mating with E. coli S17-1. A late exponential culture of

E. coli harboring the relevant plasmid and P. fluorescens strain BCCM_ID9359

were mixed on a 0.45 mm sterile Millipore filter, placed on an LB-agar plate.

After overnight incubation at 28�C, the mixture was resuspended in 1 ml of

saline solution and spread on LB-agar plates supplemented with plasmid-

selective antibiotic and triclosan. Cointegrant clones were picked and

incubated in tryptose broth without selection overnight at 30�C. Serial dilutions
were spread on tryptose plates containing 5% sucrose, to select for vector

excision. Deletion knockouts were screened by replica plating and PCR

analysis.

Heterologous BatG Expression

The BatG open reading frame was amplified and cloned into pJH10

(El-sayed et al., 2001) under control of the tac promoter (pJH10_BatG). For
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BatG, the difference in G+C-content between Gram-positive and Gram-

negative bacteria, expression (transcription, translation) of high G+C-content

genes in Gram-negative bacteria did not cause a problem: BatG and its

upstream region was amplified and cloned into the low-copy-number

S. aureus shuttle vector pSK5632 (Grkovic et al., 2003) (pSK5632_BatG)

(primers are listed in Table S1). DNA transfer to P. fluorescens was per-

formed through biparental mating with E. coli S17-1. S. aureus RN4220

was transformed with pSK5632_BatG by electroporation as described by

Schenk and Laddaga (1992). Expression of BatG was induced by varying

IPTG concentrations (1 mM to 1 mM) to examine an expression dose-depen-

dent effect.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and one table and can be found

with this article online at doi:10.1016/j.chembiol.2010.07.015.
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